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1. Introduction

In QCD with Nc colors and Nf light dynamical quarks there are two notions of the topo-

logical susceptibility, defined as the second moment of the global topological charge distri-

bution.

On the one hand, the actual topological susceptibility χQCD
top shows a clear sensitivity on

the dynamical (sea) quark masses [1]. This property renders it an ideal vacuum diagnostics

tool, as emphasized in [2] and exploited in a number of recent studies [3 – 10].

On the other hand, the quenched topological susceptibility χYM
top is the quantity which

is linked via the famous Witten-Veneziano formula [11, 12]

χYM
top

.
=

F 2

2Nf
(M2

η′ + M2
η − 2M2

K) (1.1)

to the excess of the η′ mass over the pseudoscalar octet masses, with a proportionality

factor which contains the pseudoscalar decay constant1 in the chiral limit. This relation is

supposed to hold at the leading order in an expansion in 1/Nc (for a different viewpoint

see [13 – 15]). To be precise, this quenched susceptibility is the susceptibility of the un-

derlying SU(Nc) Yang-Mills (YM) theory, and this is what makes (1.1) appealing from a

theorist’s viewpoint — it relates two different theories. Specifically, on the lattice one can

measure the l.h.s. of (1.1) for several Nc and evaluate the r.h.s. for various (Nc, Nf ) com-

binations, and finally check whether the agreement is parametrically controlled by 1/Nc or

Nf/Nc.

1We use the Bern normalization where F phys
π =92.4(3) MeV and F =86.2(5) MeV in the chiral limit.
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In this paper we elaborate on the first step in this program — we determine with

unprecedented precision the quenched topological susceptibility for the case Nc = 3. We

begin with an exposition of the main avenues towards defining a topological charge on

the lattice and how one extracts the topological susceptibility. The next two sections

contain details of our lattice simulations and of our combined continuum and infinite volume

extrapolation. Having a result in terms of the Sommer radius r0 [16], the latter needs to

be identified with a length-scale in fm, and we discuss both the input that goes into such

an identification and the remaining ambiguity. In the concluding section we compare our

result to other recent determinations of χtop ≡ χYM
top . Details of a new parameterization of

r0(β) have been arranged in an appendix.

2. Topological charge definition

In the continuum the topological charge of a given gauge background is defined as

q =
1

16π2

∫

dx tr(Fµν(x)F̃µν(x)) =
1

32π2

∫

dx tr(εµνσρFµν(x)Fσρ(x)) (2.1)

where Fµν =F a
µνλa/2 is the field strength tensor. For toroidal space-time geometry (2.1) is

integer and linked to the index of the Dirac operator D via the Atiyah-Singer theorem [17]

q = n+ − n− (2.2)

where n± denotes the number of zero modes of D with positive or negative chirality.

On the lattice the definition of the topological charge is not unique. Aiming for the

gluonic side of (2.2), one may choose any discretization of Fµν which has the correct

perturbative continuum limit, and form the so-called “naive” (or unrenormalized field-

theoretic) charge

qnai[U ] =
1

32π2

∑

x

tr(εµνσρFµν(x)Fσρ(x))

=
1

4π2

∑

x

tr(F12F34 + F13F42 + F14F23) . (2.3)

In general this definition does not lead to an integer2 charge.

On the other hand, the fermionic side of (2.2) always yields an integer an-

swer. This is most straightforward with the massless overlap3 operator D = ρ[1 +

DW,−ρ(D
†
W,−ρDW,−ρ)

−1/2] [22] or with any other Dirac operator D which satisfies the

Ginsparg-Wilson relation [23]. In this case the index can be written in the closed

form [24, 25]

qfer[U ] = −
1

2ρ
tr(γ5D) . (2.4)

With a non-chiral Dirac operator (e.g. DW) explicit mode counting prescriptions may be

set up. Below, the only point which matters is that qfer[U ] is necessarily an integer.

2There are two known exceptions, the Lüscher [18] and the Phillips-Stone [19] definitions of qfth[U ].
3It does not matter whether one uses the Wilson operator DW or another doubler-free kernel [20, 21].
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Figure 1: Histogram of the topological charge qnai with 3 HYP steps for the 124 lattices at β = 6.0,

before and after rescaling with the renormalization factors defined in (2.6).

The continuum topological susceptibility at zero virtuality is defined as

χtop = lim
V →∞

〈q2〉

V
(2.5)

and this shows that a finite volume is mandatory for the definition. Still, contributions to

〈q2〉 which grow less than linearly in the 4D volume V create finite volume effects in χtop.

On the lattice the details of the topological charge definition reflect themselves in the

precise form of the latticized version of (2.5) [26]. In case one starts with the gluonic

definition (2.3), the traditional approach has been to form the bare susceptibility 〈q2
nai〉/V

which is then subject to both additive and multiplicative renormalization [27 – 29]. On the

other hand, starting from the fermionic definition (2.4), one just forms 〈q2
fer〉/V , since qfer is

already a renormalized charge. Likewise, if we first compute a renormalized (integer) field-

theoretic charge, the susceptibility based on it will not require any further renormalization4.

In this paper we investigate the utility of such a renormalized gluonic charge definition

for a precision measurement of the topological susceptibility in the pure SU(3) gauge theory.

We start from the standard “clover-leaf” definition of Fµν(x) (it uses the average of the

antihermitean part of the plaquette Uµν in x, x−µ̂, x−ν̂, x−µ̂−ν̂) based on HYP smeared [34]

gauge links. Plugging this into (2.3) we have the bare charge qnai[U ] which is a real number.

One of our qnai distributions (β=6.0, 124, 3HYP steps) is shown in the left panel of figure 1.

Thanks to CP symmetry only a multiplicative renormalization applies, and we opt for a

non-perturbatively defined Z-factor. Still, there are various possibilities, and we choose a

4Note that the round-to-integer operation (2.7) brings in a global element, and our qren is not given by

the integral over a local charge density. Accordingly, there is no conflict with the result by Stamatescu and

Seiler that in general q(x) mixes with the identity and the correlator
R

q(x)q(0) dx has a contact term [30].

Any overlap based charge definition sticks out in the sense that it is an integral of a local density and avoids

the mixing with the identity [31 – 33]. The argument for the absence of additive mass renormalization is

then standard — in the zero-charge sector the susceptibility vanishes exactly. Note that it is essential to

define the sectors with the same operator that is used in the χtop estimator — if one uses one overlap charge

to define the sector and another overlap charge to measure 〈q2〉, then even the overlap based susceptibility

has an additive renormalization.
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strategy which makes use of the fact that on fine enough lattices the overall distribution

of qnai tends to cluster near integer values (cf. figure 1). We find Z as the solution5 of

min
Z>1

(χ2) where χ2 =
∑

U

(

Z qnai[U ] − round(Z qnai[U ])
)2

(2.6)

and use it to define, via rounding to the nearest integer, the renormalized field-theoretic

charge

qren[U ] = round(Z qnai[U ]) (2.7)

which, by construction, is an integer. This charge definition has already been used in [35].

The alert reader might be surprised by our frequent use of expressions like “we choose”

or “we opt for” in this passage. Indeed, there is a huge amount of freedom in how one

attributes an integer charge to a lattice configuration. However, according to the stan-

dard scaling hypothesis by Symanzik this ambiguity reflects itself in different O(a2) cut-off

effects of observables built from the topological charge. It has been checked that the “dis-

agreement rate” between any pair of charge definitions quickly vanishes with β →∞ [37]

and that the gluonic or fermionic charge definition yields the same continuum limit for the

topological susceptibility [29, 38, 39]. Clearly, this is not a mathematical proof, but it is

worth emphasizing that this is exactly the behavior that one expects to see, if one is in the

Symanzik scaling regime.

3. Lattice simulations

Our goal is to perform a series of simulations in a fixed physical volume that will allow us

to determine the topological charge distribution in the continuum limit (in that volume).

This will be complemented by a second series of simulations (at a fixed lattice spacing) to

assess possible finite volume effects.

We use the MILC code [40] to produce the SU(3) gauge ensembles. We choose the

Wilson gauge action and run parameters as detailed in table 1 (for the scaling series)

and table 2 (for the volume extrapolation series). The scale is set via the Sommer radius

r0 [16], based on a new parameterization of data from [41] as specified in the appendix.

The physical value is a separate topic that will be discussed along with the presentation of

the final result.

We start with a closer look at table 1. Throughout, our runs are designed to yield ∼105

measurements. Anticipating that the autocorrelation time of the topological charge rapidly

grows with β, we have increased the number of updates, nsepa, between adjacent measure-

ments. Still, it turns out that the measured integrated autocorrelation times are somewhat

larger on the finer lattices. The renormalization factor Z for qnai with 3HYP steps, as de-

fined in (2.6), seems to go monotonically towards 1 with increasing β, as expected. Based

on it we determine q = qren defined in (2.7). As a first check, we measure |〈q〉|, and this

moment is consistent with zero on all lattices. The observable of interest, 〈q2〉, is measured

5The restriction Z > 1 is a technical aspect of the minimization procedure to avoid the global minimum

χ2 = 0 at Z = 0 [35]. In perturbation theory one finds Z = 1 + const g2
0 with const > 0 [36].
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β 5.8980 6.0000 6.0938 6.1802 6.2602 6.3344

L/a 10 12 14 16 18 20

nsepa 10 10 10 50 50 100

nconf 100010 101600 103705 101710 112222 105314

Z 1.2902 1.2353 1.1993 1.1742 1.1570 1.1430

τint(q) 0.93 2.18 4.83 2.27 4.65 4.61

τint(q
2) 0.61 1.09 2.44 1.19 2.45 2.52

τint(sign(q)) 0.89 2.05 4.42 2.10 4.25 4.27

|〈q〉| 0.004(5) 0.007(8) 0.007(11) 0.007(8) 0.021(10) 0.010(10)

〈q2〉 1.695(9) 1.592(11) 1.490(15) 1.465(10) 1.427(14) 1.381(14)

〈q4〉/〈q2〉2 − 3 0.214(21) 0.238(24) 0.244(27) 0.227(21) 0.241(30) 0.204(32)

〈q4〉/〈q2〉 − 3〈q2〉 0.363(36) 0.378(38) 0.363(40) 0.333(32) 0.344(43) 0.282(44)

〈q4〉 − 3〈q2〉2 0.616(61) 0.602(62) 0.541(60) 0.487(46) 0.490(63) 0.389(61)

〈q2〉q 6=0 1.702(12) 1.610(13) 1.526(22) 1.486(13) 1.461(21) 1.400(19)

Table 1: Summary of the scaling series of runs. Unless stated otherwise, q is the renormalized

(i.e. integer) gluonic topological charge qren with 3HYP steps. The subscript “q 6= 0” means that

the distribution of |q| with q 6= 0 has been fitted to a half-Gaussian. Statistical errors have been

estimated via a jackknife with the blocklength set to round(10τint(q)).

β 6.0000 6.0000 6.0000 6.0000 6.0000

L/a 10 12 14 16 18

nsepa 10 10 10 10 10

nconf 103600 101600 99000 100000 105000

Z [1.2441] 1.2353 [1.2333] [1.2332] [1.2237]

τint(q) 1.80 2.18 2.25 2.09 2.13

τint(q
2) 1.34 1.09 1.10 1.11 1.13

τint(sign(q)) 1.74 2.05 1.96 1.74 1.71

|〈q〉| 0.004(4) 0.007(8) 0.003(11) 0.020(14) 0.023(17)

〈q2〉 0.586(5) 1.592(11) 3.012(20) 5.198(34) 8.233(53)

〈q4〉/〈q2〉2 − 3 1.277(41) 0.238(24) 0.095(20) 0.065(19) 0.008(16)

〈q4〉/〈q2〉 − 3〈q2〉 0.748(24) 0.378(38) 0.287(59) 0.338(97) 0.069(139)

〈q4〉 − 3〈q2〉2 0.439(15) 0.602(62) 0.86 (18) 1.76 (50) 0.57 (114)

〈q2〉q 6=0 0.780(10) 1.610(13) 3.009(26) 5.202(51) 8.242(54)

Table 2: Summary of the volume extrapolation series of runs. Throughout, the charge renormal-

ization factors of the (6.0, 124) lattices have been used. For details see caption of table 1.

with 1% statistical accuracy (or better), throughout. We have also checked that using a

2 HYP or 4 HYP charge would change the suscpetibility by an amount which is an order of

magnitude smaller than the statistical error of the 〈q2〉 given. Our data are precise enough

to evaluate the fourth moment of the distribution, and the kurtosis 〈q4〉/〈q2〉2 − 3 turns

out to deviate from zero, for most lattices in the scaling series, by about 10σ. It seems

– 5 –
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Figure 2: Distribution of qren for the (6.0, 124) [left] and (6.3344, 204) lattices [right]. The fit to a

Gaussian form excludes the q=0 sector; the excess gives rise to the kurtosis 〈q4〉/〈q2〉2−3 reported

in table 1, an effect that goes away in the infinite volume limit, as evident from table 2.

independent of the lattice spacing and it is thus natural to ask whether a non-vanishing

〈q4〉/〈q2〉2 − 3 is a finite volume effect.

This brings us to discuss the second series of runs, as detailed in table 2. Potential

finite volume effects are commonly attributed to infrared physics; we thus restrict ourselves

to a single coupling, β = 6.0. Again, we aim for O(105) measurements per run. For

larger volumes the “crest and valley” structure in figure 1 becomes less pronounced,6 and

we pursue the analysis with the Z-factor determined on the (6.0, 124) lattices. Now one

expects the autocorrelation times to be independent of the volume. This happens to be

true, except in the L/a=10 case, where we find severe finite volume effects in 〈q2〉, too (see

below). Again |〈q〉| is basically consistent with zero. The second moment 〈q2〉 is measured,

as before, with 1% statistical accuracy (or better) on all lattices. The main point of this

series is clear evidence that the kurtosis 〈q4〉/〈q2〉2 −3, which quantifies the deviation from

a Gaussian distribution, tends to zero with V →∞.

This observation lets us plot the charge histograms for two lattices from the scaling

series in figure 2. It turns out that the relative weight of the toplogically non-trivial sectors

is almost consistent with a Gaussian form, while the q =0 sector shows a clear excess. It

is thus tempting to define a new 〈q2〉q 6=0 as the width of this Gaussian, where the fit takes

only the nontrivial sectors into account. In fact, due to CP symmetry the distribution

is even, and we produce a histogram of |q|. The |q| ≥ 1 sectors are then fitted to a half-

Gaussian. This procedure stabilizes the contribution from the tails (for this reason a similar

“improved estimator” was used in [42]), but it also introduces a model dependence.

– 6 –
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β 6.0000 6.0938 6.1802 6.2602 6.3344

L/a 12 14 16 18 20

〈q2〉(r0/L)4 6330(60) 5926(71) 5826(57) 5673(67) 5490(66)

〈q2〉q 6=0(r0/L)4 6401(69) 6066(95) 5907(66) 5808(92) 5568(84)

Table 3: Summary of the data from the scaling series of runs, in units of 10−5. Here, an extra

0.68% error has been added w.r.t. what is reported in table 1.

L/a (β=6.0) 10 12 14 16 18

〈q2〉(r0/L)4 4834(42) 6330(42) 6464(43) 6540(43) 6468(42)

〈q2〉q 6=0(r0/L)4 6428(79) 6401(53) 6458(56) 6545(64) 6474(42)

Table 4: Summary of the data from the infinite volume extrapolation series, in units of 10−5.

Here, no extra error has been added w.r.t. what is reported in table 2.

4. Continuum and infinite volume extrapolations

For the continuum and infinite volume extrapolation of the quenched topological suscep-

tibility we convert our data to physical units by multiplying them with the appropriate

power of r0/a. In the scaling series the uncertainty of L/r0 reflects itself independently

for each datapoint. Assuming that L/r0 is known (at each β) with 0.17% precision (see

appendix) an extra 0.68% error needs to be included in table 3. By contrast, in the vol-

ume extrapolation series the uncertainty of L/r0 is correlated, and no extra error has been

included in table 4.

For the continuum extrapolation in a fixed physical volume we plot our data against

(a/r0)
2. This power of the lattice spacing is motivated by a Symanzik analysis (both the

Wilson action and our topological charge operator contain dimension 6, but no dimension

5 operators). In principle, the uncertainty of r0/a also leads to a horizontal error bar, but

its effect is negligible, and we shall omit it. The resulting fits are shown in figure 3. The

observables 〈q2〉(r0/L)4 and 〈q2〉q 6=0(r0/L)4 extrapolate in a parallel manner, giving the

continuum values 0.05092(71) and 0.05205(71), respectively. The difference, if evaluated

inside a jackknife, is significant.

This brings us to the discussion of finite volume effects. Standard reasoning suggests

that the dominant finite volume corrections in the YM theory come from glueball states

travelling around the box. Since euclidean Green’s functions fall off exponentially, this

would imply

Zν(L) = Zν(∞)
(

1 + const e−MGL + . . .
)

(4.1)

in close analogy to relative finite volume effects in QCD being proportional to exp(−MπL).

Simple models for the YM vacuum (random population of unit cells by instantons or anti-

instantons) suggest no finite volume corrections for the susceptibility and a 1/V type

6Here it is understood that the total statistics is kept fixed, so that the number of configurations in a

given sector drops. Via appropriately increasing the statistics, Z can be determined in a volume as large

as desired.
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Figure 3: Continuum extrapolation of χtopr4
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Figure 4: Infinite volume extrapolation of χtopr4
0 , versus r0/L [cf. (4.1)] and (r0/L)4 [cf. (4.2)].

kurtosis.7 As a result, one may consider the alternative form of the partition function

Zν(L) = Zν(∞)
(

1 + const/L4 + . . .
)

. (4.2)

The data of table 4 are shown in figure 4. If we assume exponential finite-volume effects,

the data for the first estimator may be fitted all the way out to L/a=10. The difference of

7With independent fluctuations in unit cells V1, . . . , VN this is generic: 〈ν2〉 = 〈(ν1 + . . .+νN )2〉 = N〈ν2
1〉

and 〈ν4〉 =
PN

i
〈ν4

i 〉 + 6
PN

i<j
〈ν2

i 〉〈ν
2
j 〉 = N〈ν4

1〉 + 3N(N − 1)〈ν2
1〉〈ν

2
2〉, where we use that all odd moments

vanish.
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Figure 6: Left: Infinite volume extrapolation of the kurtosis 〈q4〉/〈q2〉2 − 3 in log-log form; this

quantity vanishes with V →∞. Right: The reduced moment ratio 〈q4〉/〈q2〉 − 3〈q2〉 versus r4
0/V .

This plot includes constant fits to the last 2, 3 or 4 datapoints and a linear fit to all 5 points. We

cannot discriminate a finite from a vanishing limit of this quantity with V →∞.

the fit curve at L/a=12 and at L/a=∞ suggests that the continuum result for 〈q2〉(r0/L)4

is suppressed by the amount 0.00175, and this gives a corrected 〈q2〉(r0/L)4 =0.05267(71).

With the other estimator the fitted value for “const” in (4.1) is consistent with zero, and

we stay with 〈q2〉q 6=0(r0/L)4 =0.05205(71), as quoted above. If we assume 1/V -type effects,
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finite-volume corrections are hard to quantify (at least the volume-scaling regime with the

first estimator is smaller). Therefore, we decide to stay with the extrapolation via (4.1).

Taking the average of both estimators but keeping the full difference as a theoretical un-

certainty, we consider

χtopr4
0 = 0.05236(71)(62) (4.3)

our final result, where the first error is statistical and the second systematic.

Our data for the kurtosis 〈q4〉/〈q2〉2 − 3 scale perfectly (figure 5), and the infinite

volume extrapolation is consistent with both an exponential and a power law behavior.

We find that in the YM theory a non-zero kurtosis is a pure finite volume effect and has

nothing to do with the discretization (figure 6). Since our “independent cell” model of

footnote 7 and large Nc arguments suggest that 〈q4〉/〈q2〉 − 3〈q2〉 has a finite limit with

V →∞, we plot this quantity versus 1/V in figure 6, too. It turns out that our data are

consistent with the value 0.276(84) given in [43], but we cannot rule out the possibility

that the infinite volume limit might actually vanish.

5. Conversion to physical units

Having an unambiguous result for the topological susceptibility in the combined continuum

and infinite volume limit in units of the Sommer scale r−1
0 [16], we are left with the question

which value [in MeV] the latter should be identified with.

In QCD r0 is a well-defined quantity. In other words, one could measure aMp, aMπ and

aMK in a 2+1 flavor simulations in which their ratios are always adjusted to the respective

experimental ratios. By considering the continuum limit of r0Mp, one would have the

correct physical value of r0, and there is nothing wrong with using this value also in pure

YM theory. The original estimate r0 =0.5 fm [16] for the outcome of this procedure has been

superseded, more recently, by values like r0 =0.467(6) fm [44, 45]. Alternatively, one could

set the scale in the quenched theory via r0fK = 0.4146(94) [46], using fK = 160(2)MeV

from experiment. This has the same effect as attributing r0 =0.512(12) fm. To encompass

this spread we set the scale via r0 =0.49 fm and add a 4% error to reflect the intrinsic scale

ambiguity in pure YM theory.

With this choice for r0 our value χtopr4
0, as quoted in the previous section, amounts to

χ
1/4
top = 193(1)(8)MeV (5.1)

where the first error bar contains all statistical and systematic uncertainties of our calcu-

lation, and the second one reflects the scale setting ambiguity in a theory which is not full

QCD.

6. Summary

In this paper we have performed a precision study of the topological susceptibility in pure

SU(3) Yang Mills theory in the combined continuum and infinite volume limit using a

field-theoretic definition of the topological charge.
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χtopr4
0 χ

1/4
top [MeV] χ

1/4
top [MeV]

Ref. [49] (2001) 0.072(7) 209(5)(8) —

Ref. [43] (2002) 0.057(3) 197(3)(8) 180(2)(8)

Ref. [39] (2003) 0.055(10) 195(9)(8) 188(12)(8)

Ref. [50] (2003) 0.059(5) 198(4)(8) —

Ref. [42] (2004) 0.059(3) 198(3)(8) 191(5)(8)

this work 0.0524(9) 193(1)(8)

Table 5: Summary of the quenched topological susceptibility (in the continuum) as determined in

some recent studies. The results χtop/σ2 =0.0355(33) [49] and χtop/σ2 =0.0282(12) [43] have been

converted to r−4
0 units by means of σ1/2r0 = 1.193(10) [51]. In the second column the conversion

to MeV has been done with our choice r0 = 0.49 fm, while the third one contains the values given

in the respective papers, but with our standard scale setting error throughout.

Comparing our final result to other recent8 determinations [49, 43, 39, 50, 42] (see

table 5 for details) we see a downward trend over time. Our result in r−4
0 units is sub-

stantially more precise, since we work much closer to the continuum (our β = 6.0 lattices

are the coarsest ones used in the continuum extrapolation) and due to the large statistics.9

The conversion to MeV is, of course, limited by the basic scale setting ambiguity in the

quenched theory. In any case our final result (5.1) supports the Witten Veneziano scenario

for the origin of the η′ mass.
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A. Parametrization of r0/a

In ref. [41] Necco and Sommer use a polynomial approximation for log(r0/a). Specifically

log(r0/a)
∣

∣

∣

NS
= c0 + c1(β − 6) + c2(β − 6)2 + c3(β − 6)3 (A.1)

with c0 = 1.6804, c1 = 1.7331, c2 = −0.7849, c3 = 0.4428 is suggested in order to generate

matched lattices for 5.7 ≤ β ≤ 6.92, i.e. combinations of (β,L/a) with fixed L/r0. We

have repeated the analysis with their data [41] and find essentially the same c0...3, with

χ2/d.o.f. = 1.39.

Here, we wish to explore a rational approximation of log(r0/a) which has the merit of

being consistent with perturbation theory. In the weak coupling regime a∝exp(−1/[2β0g
2
0 ])

8We like to draw the readers attention to two studies [47, 48] with a fermionic charge where no continuum

limit has been taken. Note that the charges QI in [49] and Qg in figure 5 of [39] are similar in spirit to our

qren.
9There is a similar high-statistics study, based on an overlap charge [52]. They have no continuum limit

yet for χtop, but they see a deviation from zero in 〈q4〉 − 3〈q2〉2 or the kurtosis in a fixed volume.
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Figure 7: Old polynomial χ2/6 = 1.39 and new rational χ2/6 = 0.91 fit to the data of ref. [41].

Asymptotic freedom demands that the curve eventually becomes linear with slope 4π2/33, and this

constraint is built into the new rational ansatz (A.2).

L/a 10 12 14 16 18 20

β 5.8996 6.0000 6.0926 6.1790 6.2601 6.3362

L/r0 2.2357 2.2356 2.2357 2.2357 2.2356 2.2357

β 5.8980 6.0000 6.0938 6.1802 6.2602 6.3344

L/r0 2.2394 2.2394 2.2394 2.2395 2.2393 2.2393

Table 6: Upper part: (β, L/a) combinations which match (6.0, 12) [via achieving L/r0 = 2.2356

as accurately as possible], based on the interpolation formula (A.1) of [41]. Lower part: Same [via

achieving L/r0 =2.2394 as accurately as possible], based on the interpolation formula (A.2).

with the universal coefficient β0 =1/(4π)2 · [11Nc/3 − 2Nf/3]. In SU(3) gluodynamics one

has thus a∝exp(−16π2/132 · β) or log(r0/a) = 4π2/33 · β + . . . and we employ the ansatz

log(r0/a)
∣

∣

∣

new
=

4π2

33
β ·

1 + d1/β + d2/β
2

1 + d3/β + d4/β2
(A.2)

where this constraint is built in. Using again their data we find that the best fit is given

through d1 =−8.2384, d2 =15.310, d3 =−2.7395, d4 =−11.526 with χ2/d.o.f. = 0.91.

It is straightforward to find the β-values which match a simulation with (β,L/a) =

(6.0, 12). The results are given in table 6, both for (A.1) and for (A.2). It turns out that

the matched β-values are more or less the same with either formula and the pertinent L/r0

(and hence our estimates for the physical box-length) differ by 0.17% only. This should

not come as a surprise, since the two curves in figure 7 are rather close. Still, since the new

interpolation has a better theoretical foundation and the χ2/d.o.f. is lower, we choose the

new parameterization (A.2). Nonetheless, it is clear that the original parametrization (A.1)
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remains a legitimate and good one in the interval in which it is given.
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